Cluster Analysis

{Copyright note: this lecture is partly based on lecture materials of T. Olszewski, Texas A & M, and Michal Kowalewski, U. Florida)

An explorative technique for identifying groups and subgroups in a
multivariate dataset, based on a given distance or similarity measure. —
Hammer and Harper Paleontological Data Analysis
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Cluster Analysis

{Copyright note: this lecture is partly based on lecture materials of T. Olszewski, Texas A & M}

Classify observations or variables into interpretable categories (i.e., clusters)

Purpose
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Dendrogram: A branching diagram that hierarchically nests
objects into increasingly more inclusive groups; degree of
similarity is depicted by length of branch; ordering axis prevents
branches from crossing but is otherwise arbitrary
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Starting dataset: similarity (or distance)
matrix

Bray-Curtis similarity matrix

SpM Bar Amb Sca Bsb Bal Cob Al

SpM
Bar 39.39
Amb 3632 5387
Sca 0.00 000 000
Bsb 0.00 000 000 5833
Bal 746 909 000 0.00
Cob 0.00 000 370 0.00
Al 0.00 909 2963 0.00
Gag 000 000 000 000
Blu 0.00 3030 000 000 000 000 000 000 000
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Starting dataset: similarity (or distance)
matrix

Bray-Curtis similarity matrix

SpM Bar Amb Sca Bsb Bal Cob Al

SpM
Bar
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Cob
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Starting dataset: similarity (or distance)
matrix

Bray-Curtis similarity matrix

SpM Bar Amb Sca Bsb Bal Cob Al

SpM
Bar
Amb
Sca
Bsh
Bal
Cob 1 : .
All ! : ! 000 000 000

Gag 000 000 000 000 4!.67| 000 000 000

Blu 000 3030 000 000 000 000 000 000 000




How to convert distance matrix to
clusters?

Types of clustering
* Divisive versus Agglomerative

 Hierarchical (connectivity based) versus Non-
Hierarchical (centroid-, density-, other-based)

The classic approach is agglomerative and
hierarchical



Hierarchical clustering:
* Divisive (or partitioning) Clustering: Top-down

* Agglomerative Clustering: Bottom-up
* Most commonly used
* |terative

* Not a statistical test! (though one could be applied...
e.g. Similarity Profile Analysis (SIMPROF) )



Agglomerative Clustering
Steps:

1) SEARCH. Start with a similarity matrix (ALL agglomerative clustering methods
start at this point); find the cell with the highest similarity value (or lowest
dissimilarity value) and link that pair of objects (i.e., form a cluster); note that if
there is more than one pair with equal similarity, link the first pair found
(IMPORTANT: this means that the order of objects in the matrix can influence
the outcome, particularly for large data sets with lots of duplicate values!).
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the outcome, particularly for large data sets with lots of duplicate values!).

2) REDUCE. Recalculate similarities, treating the clusters as new objects; how
clusters are treated differs among different algorithms.



Agglomerative Clustering
Steps:

1) SEARCH. Start with a similarity matrix (ALL agglomerative clustering methods
start at this point); find the cell with the highest similarity value (or lowest
dissimilarity value) and link that pair of objects (i.e., form a cluster); note that if
there is more than one pair with equal similarity, link the first pair found
(IMPORTANT: this means that the order of objects in the matrix can influence
the outcome, particularly for large data sets with lots of duplicate values!).

2) REDUCE. Recalculate similarities, treating the clusters as new objects; how
clusters are treated differs among different algorithms.

3) REPEAT until all objects are related to one another.
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Agglomerative Linking Algorithms (How do we determine groups?)
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* With singleton clusters, linkage straightforward
* Greatest similarity or Least distance
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used will often significantly affect the resulting
clusters



Agglomerative Linking Algorithms (How do we determine groups?)

* With singleton clusters, linkage straightforward
* Greatest similarity or Least distance

* For multi-observation clusters: Linkage algorithm
used will often significantly effect the resulting
clusters

* No consensus on the “best” algorithm



Agglomerative Linking Algorithms (How do we determine groups?)

Types of Algorithms

* Nearest Neighbor @ —

)

* Farthest Neighbor | /\/>< __'__/"'
* Average Linkage )
* Unweighted or N

weighted

* Centroid Linkage

* Unweighted or
weighted

e Ward’s




Agglomerative Linking Algorithms

Nearest Neighbor or Single Linkage Clustering. Similarity between two clusters equals the
maximum similarity (minimum dissimilarity) between any two members of the clusters:
S(AB),C = max(SAC, SBC) S(AB),(CD) = max(SAC, SAD, SBC, SBD)

Note: This algorithm tends to produce “chaining” (i.e., apparent addition of each object in a dendrogram, one by one);
normally, this would suggest a gradient structure in the data, but single linkage clustering can produce it artifactually.

single nkage/nearest neighbdor

A




Agglomerative Linking Algorithms

Nearest Neighbor or Single Linkage Clustering. Similarity between two clusters equals the
maximum similarity (minimum dissimilarity) between any two members of the clusters:
S(AB),C = max(SAC, SBC) S(AB),(CD) = max(SAC, SAD, SBC, SBD)

Note: This algorithm tends to produce “chaining” (i.e., apparent addition of each object in a dendrogram, one by one);
normally, this would suggest a gradient structure in the data, but single linkage clustering can produce it artifactually.

Single linkage clustering:

Dist A B C D E F
B .
N Es (D,F) and E distance = 1.00
c [seelass] | because:
D : 3.61 | 2.92 | 2.24 | |
E 1 4.24 1354 | 141 |1.00 | | (D’ E) — 100
F 3.20 | 250 | 2.50 | 050 | 1.12 |
(F, E) = 1.12

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Farthest Neighbor or Complete Linkage Clustering. Similarity between two clusters equals

the minimum similarity (maximum dissimilarity) between any two members of the clusters:
S(AB),C = min(SAC, SBC) S(AB),(CD) = min(SAC, SAD, SBC, SBD)

Note: Use this rule to recalculate similarity values in the matrix (in the REDUCING step), but continue to SEARCH for the

greatest similarity values. This algorithm tends to produce very clear groups —i.e., by using minimum values, it tends
to underestimate similarity between recognized clusters.

complete linkagefurthest neighbor

A




Agglomerative Linking Algorithms

Farthest Neighbor or Complete Linkage Clustering. Similarity between two clusters equals
the minimum similarity (maximum dissimilarity) between any two members of the clusters:
S(AB),C = min(SAC, SBC) S(AB),(CD) = min(SAC, SAD, SBC, SBD)

Note: Use this rule to recalculate similarity values in the matrix (in the REDUCING step), but continue to SEARCH for the
greatest similarity values. This algorithm tends to produce very clear groups —i.e., by using minimum values, it tends
to underestimate similarity between recognized clusters.

Complete linkage
clustering:

Dist A B € D E F

A

- - (D,F) and E distance = 1.12
¢ |566]|49s| |

D [361]292] 224 | | because:

e [424]354] 141 [1.00

F[320]250] 250 0550 1.12] (D, E) =1.00

(F, E) = 1.12

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Unweighted Pair Group Method with Arithmetic Averaging (UPGMA). Similarity between
two clusters equals the mean similarity between all possible pair-group combinations:
S(AB),C = (SAC + SBC)/2 S(AB),(CD) = (SAC + SAD + SBC + SBD)/4

SE,(C,(AB)) = (SAE + SBE + SCE)/3

Note: Degree of clustering is intermediate between single and complete linkage. Clusters with more samples exert
greater influence on the similarity of the new cluster with all other objects.

UPGMA




Agglomerative Linking Algorithms

Unweighted Pair Group Method with Arithmetic Averaging (UPGMA). Similarity between
two clusters equals the mean similarity between all possible pair-group combinations:

S(AB),C = (SAC + SBC)/2

SE,(C,(AB)) = (SAE + SBE + SCE)/3

Note: Degree of clustering is intermediate between single and complete linkage. Clusters with more samples exert
greater influence on the similarity of the new cluster with all other objects.

Dist A
A .
B |071]
c |566
D |361
E 424
-

3.20 |

495
2.92

3.54

2.50 |

C D E
2.24
141 | 1.00

2.50 |0.50 | 1.12 |

S(AB),(CD) = (SAC + SAD + SBC + SBD)/4

UPGMA clustering:

((D,F), E) and C =2.05
because:

(D, C) = 2.24
(F, C) = 2.50
(E, C) = 1.41

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Weighted Pair Group Method with Arithmetic Averaging (WPGMA). Similarity between two

clusters equals the mean similarity of previously existing clusters when they are grouped
(average always involves only 2 terms and does not weight clusters by their size; i.e., when linking a cluster containing

20 samples and another containing 2 samples, the 2-sample cluster is treated as equal to the 20-sample cluster):
S(AB),C = (SAC + SBC)/2

S(AB),(CD) = [%(SAC + SAD) + %(SBC + SBD)]/2 = [SA,(CD) + SB,(CD)]/2

SE,(C,(AB)) = [%4(SAE + SBE) + SCE)]/2 = (SE,(AB) + SCE)/2

Note: The first two cases are identical to UPGMA, but the third effectively downweights the members of the larger

cluster (AB) so that each cluster carries the same influence on the mean similarity regardless of the number of samples
it includes.

WPGMA




Agglomerative Linking Algorithms

Weighted Pair Group Method with Arithmetic Averaging (WPGMA). Similarity between two

clusters equals the mean similarity of previously existing clusters when they are grouped
(average always involves only 2 terms and does not weight clusters by their size; i.e., when linking a cluster containing

20 samples and another containing 2 samples, the 2-sample cluster is treated as equal to the 20-sample cluster):
S(AB),C = (SAC + SBC)/2

S(AB),(CD) = [%(SAC + SAD) + %(SBC + SBD)]/2 = [SA,(CD) + SB,(CD)]/2

SE,(C,(AB)) = [%4(SAE + SBE) + SCE)]/2 = (SE,(AB) + SCE)/2

Note: The first two cases are identical to UPGMA, but the third effectively downweights the members of the larger
cluster (AB) so that each cluster carries the same influence on the mean similarity regardless of the number of samples

it includes.
WPGMA clustering:
Dist A B C€C D E F
s S ((D,F), E) and C=1.89
c |seelass| | | because:
D 361|292 2.24 | '
E | 4.24 | 3.54 | 1.41 | 1.00 . ‘ ((D, F), C) - 2.37 (avg of 2.50 and
F 3.20 | 250 | 2.50 | 0.50 | 1.12 | 2.24)

(E,C) = 1.41

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Unweighted Pair Group Method with Centroid Averaging (UPGMC). Similarity between two
clusters equals their similarities as composite objects (i.e., the sums of all their component
samples):

¥ Xt Xt Xy
(AB).Ci — 3

UPGMC




Agglomerative Linking Algorithms

Weighted Pair Group Method with Centroid Averaging (WPGMC). Similarity between
two clusters equals their similarities as composite objects, but determining their
composite composition using only the last two objects (samples or clusters) to be

joined in each cluster:




Agglomerative Linking Algorithms

Ward’s Method or Minimum Variance Clustering or Orloci’s Sum of Squares. Similarity is
calculated as in UPGMA or UPGMC but clusters are created by grouping objects to minimize
the variance (or inertia/entropy/information) of the similarities between all member objects

within a cluster:

* Average Linkage ' R

* Clustering criterion based on
the average distance —

Anwaly 3022000

* Ward's Method

MARDS NETHOOD

* Based on the loss of
information resulting from Sl
grouping of the objects into wnanon
clusters (minimize within

cluster variation)



Agglomerative Linking Algorithms

Ward’s Method or Minimum Variance Clustering or Orloci’s Sum of Squares. Similarity is
calculated as in UPGMA or UPGMC but clusters are created by grouping objects to minimize
the variance (or inertia/entropy/information) of the similarities between all member objects
within a cluster:

3 clusters: ABC, DE, F; which two should be clustered next? Pick the two that produce the
minimum variance ( = mean of all S’s in that cluster):

(SAD _5)2 + (SAE _S)z + (SBD _S)2 + (SBE _5)2 + (SCD _g)z +(SCE _5)2
6

V(ABC)(DE) =

V :(SAF_§)2+(SBF_§)2+(SCF_§)2
(4BC)F 3

1% _(SDF_§)2+(SEF_‘§)2

(DEF — 2




Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:
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* Imposes hierarchical structure on data, whether real or not
* Even a completely uniform similarity matrix will produce clusters
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Limitations of Agglomerative Cluster Analysis:

* Imposes hierarchical structure on data, whether real or not
* Even a completely uniform similarity matrix will produce clusters

* |t does not depict data with multiple, independent underlying controls well
* Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc.
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* Even a completely uniform similarity matrix will produce clusters

* |t does not depict data with multiple, independent underlying controls well
* Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc.

* Because based on algorithms rather than analytical solutions, solutions can be non-unique



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

Imposes hierarchical structure on data, whether real or not
* Even a completely uniform similarity matrix will produce clusters

It does not depict data with multiple, independent underlying controls well
* Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc.

Because based on algorithms rather than analytical solutions, solutions can be non-unique

Linkage algorithm used significantly effects topology of clusters



Two-way Cluster Analysis
Use ordering axis of sample and taxon analyses of the same data to reorganize the rows
and columns of the original data matrix — a very effective way of understanding which taxa
are related to which cluster of samples. Remember that the purpose of the ordering axis in
cluster analysis is to keep branches from crossing, not to show a statistically justified
gradient, so links can be “reflected” and “spun”. In this sense, two-way cluster analysis is
arbitrary, but it is nevertheless a very effective way of relating taxa and samples and
incorporating data intc method: "WARD.D"

distance: "BRAY-CURTIS"
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method: "WARD.D"
distance: "BRAY-CURTIS"

mEl

LL%MHJHJ;A

sp.1
sp.2
sp.3
sp.4
sp.5
sp.6
sp.7
sp.8
sp.9

sp.10



| m%%lwﬂ‘ IJﬁ

%

method: "UPGMA"
distance: "BRAY-CURTIS"

sampie12

sp.8
sp.9
sp.5
sp.6
sp.7
sp.1
sp.2
sp.d
sp.d

[—]

-
o
o



method: "WPGMA"
distance: "BRAY-CURTIS"
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method: "WPGMA"
distance: "MANHATTAN"
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Cophenetic or Matrix Correlation

* Cluster analysis inherently discards some information from the original similarity
matrix. So, how well does a dendrogram represents the original matrix?



Cophenetic Correlation

Dist A B C D E F

0.71
5.66 | 4.95
361|292 | 224
424|354 | 141 |1.00
3.20| 250 | 250 | 050 1.12

T m O O ™




Cophenetic or Matrix Correlation

* Cluster analysis inherently discards some information from the original similarity
matrix. So, how well does a dendrogram represents the original matrix?

* Each pair of objects has a similarity value in the original similarity matrix and a
depicted similarity in the dendrogram (the linkage level of the pair). For each
pair, these values can be cross-plotted, with dendrogram similarity on one axis
and measured similarity on the other.



Cophenetic Correlation

Original distance matrix
Dist - B C D E F

A

B 0.71

C 5.66 | 495

D 361|292 | 224

E 424 1354 | 141 | 100

F 3.20| 250 | 250 | 0S50 112

Cophenetic (dendrogram) distance matrix

Dist A : i D E F

A

B 0.71

C 2.50 |2.50

D 2.50 |2.50| 1.41

£ 250 [2.50| 1.41 | 1.00

F 250 {250/ 1.41 | 0.50 {1.00

*Using single linkage (nearest neighbor) clustering



Cophenetic or Matrix Correlation

* Cluster analysis inherently discards some information from the original similarity
matrix. So, how well does a dendrogram represents the original matrix?

* Each pair of objects has a similarity value in the original similarity matrix and a
depicted similarity in the dendrogram (the linkage level of the pair). For each
pair, these values can be cross-plotted, with dendrogram similarity on one axis
and measured similarity on the other.

* The degree of correlation between the two (quantified using r) is a measure of
how well the clustered pattern retained the underlying information. Note that
cluster analysis generally is good at linking very similar objects but loses its ability
to accurately depict patterns at lower levels of similarity



Cophenetic Correlation

Original distance matrix
Dist - B C D E F

A Distanceg CP
B 0.71 0.71 |0.71
C 5.66 | 4.95 5.66 |2.50
D 361|292 | 2.24 3.61 |2.50
E 424 |354| 141 |1.00 424 |2.50
F 3.20| 250 | 250 | 050 | 1.12 3.20 [2.50
495 |2.50
292 |2.50
3.54 |2.50
Cophenetic (dendrogram) distance matrix 250 12.50
Dist A B & D E F 224 |1a1
A
B 071 141 |141
c 2.50 |2.50 2.50 |1.41
D 250 [2.50| 1.41 1.00 |1.00
£ 250 [2.50| 1.41 | 1.00 0.50 |0.50
F 250 [2.50| 1.41 | 0.50 [1.00 1.12 |1.00
*Using single linkage (nearest neighbor) clustering



Original distance matrix

Dist
A

T m O O ™

Cophenetic (dendrogram) distance matrix

Dist
A

B
C
D
E
F
*U

- B C D E F
0.71

5.66 | 495

361|292 | 224

424 1354 | 141 | 1.00

3.20| 250 | 250 | 050|112

A B C D E F
0.71
2.50 |2.50
250 |2.50| 141
250 |250| 141 1.00
250 |250| 141 0.50 {1.00

sing single linkage clustering

Cophenetic Correlation

pairwise similarity between samples

Cophenetic Coefficient

r=0.82
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Non-hierarchical clustering:

One common type: partitioning algorithms
* example: k-means clustering

e User defined # of clusters
* |[terative
 Non-hierarchical



Partition Clustering

Partitioning clustering starts with all objects and divides them into groups

Aim: Given n objects (observations) in a p-dimensional space (variables), determine a
partition of the objects into K groups, or clusters, such that the objects within each
cluster are more similar to one another than to objects in the other clusters. Each cluster
should have the smallest inertia or entropy or variance possible.

Note: K is determined a priori by the user, although multiple K values can be tried to find
an optimal fit



Partition Clustering

Partitioning clustering starts with all objects and divides them into groups

Aim: Given n objects (observations) in a p-dimensional space (variables), determine a
partition of the objects into K groups, or clusters, such that the objects within each
cluster are more similar to one another than to objects in the other clusters. Each cluster
should have the smallest inertia or entropy or variance possible.

Note: K is determined a priori by the user, although multiple K values can be tried to find
an optimal fit

K-means Algorithm

Divide the objects into K sets, either randomly or using some external information
Calculate the centroid of each data set

Reassign all objects to the nearest centroid

Recalculate new centroids based on new groupings

Repeat until clusters stabilize (membership no longer changes and centroids don’t move)

uhwh e

The traditional form of this algorithm minimizes the total error sum of squares (TESS):

E12< :Z Z(‘xj _Iui)2

i=1 x; €S;

K = number of clusters

S, = set of objects in cluster i (i = 1...K)
x; = value of variable j for object x

m;; = mean of variable j in cluster i



K-means algorithm

0.9
0.8 r\ |
0.7 ”“ ;e
0.6
0S¢ °*
0.4
0.3 ¢

0.2

Iteration #0
0 ol 02 0.3 04 OTS 06 0.7 08 09 1

0.1

k =3 Goal: minimizes the total error sum of squares



Divisive versus Agglomerative and Hierarchical versus Non-Hierarchical Methods — The
classical approach is agglomerative and hierarchical, modern clustering techniques for
very large data sets (e.g., genetic networks) are based on information theory and are
typically neither hierarchical (i.e., cannot be depicted as dendrograms) nor
agglomerative; rather, they are based on network linkage patterns

Example of a biogeographic
network

* Rojas et al. 2017, Geology

cells @
species e



Constrained clustering

Typically, constrained clustering incorporates either a
set of must-link constraints, cannot-link constraints,
or both.

In the usual unconstrained analysis, the entire
dissimilarity matrix is searched at each stage for the
next link/cluster. In the constrained analysis, only
stratigraphically adjacent values/clusters are
considered.



Example, constrained clustering

cal yr BP x 1000

Kettle Lake, ND
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Grimm et al. 2011






R Commands
cophenetic{stats} - computes the cophenetic distances for a hierarchical clustering.

hclust{stats} - hierarchical cluster analysis on a set of dissimilarities and methods for
analyzing it.

rect.hcluster{stats} - draws rectangles around the branches of a dendrogram highlighting
the corresponding clusters.

identify.hlcust{stats} - reads the position of the graphics pointer when the (first) mouse
button is pressed. It then cuts the tree at the vertical position of the pointer and highlights
the cluster containing the horizontal position of the pointer.

heatmap{stats} - produces a false color image (basically image(t(x))) with a dendrogram
added to the left side and to the top. Reordering of the rows and columns according to
some set of values (row or column means) within the restrictions imposed by the
dendrogram is carried out. This command can be readily modified to accommodate any
dissimilarity metric and any clustering algorithm to produce a 2-way cluster analysis.

kmeans{stats} - perform k-means clustering on a data matrix.

Also, see the {cluster} and {rioja} packages.



References for Cluster Analysis and Entropy in Ecology
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Morris, S.A. and Yen, G.G., 2004, Crossmaps: visualization of overlapping relationships in collections of
journal papers. Proceedings of the National Academy of Sciences, v. 101, p. 5291-5296. (An
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phenetic and paleoecological clustering methods.)
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Script used to generate the figure on the previous slide

library(stats)
library(vegan)

x <- read.csv("dummyorddata.csv") # an example of a simple multivariate dataset

x1 <- as.matrix(x[,-1]) # store as a matrix of numerical variables of interest
x1 <- wisconsin(x1) # standardized/transform data as appropriate
rownames(x1) <- x[,1] # store sample labels as rownames

myblue <- c("#00FFCC","#00EFCC","#0OEECC","#00ODECC","#00DDCC","#00CDCC","#00CCCC","#00BCCC","#00BBCC","#00OAACC",
"#0099CC","#0088CC","#0087CC","#0077CC","#0076CC","#0066CC","#0065CC","#0055CC","#0054CC","#0044CC","#0043CC","#0033CC","
#0032CC","#0022CC","#0021CC","#0011CC","#0011BB","#0011AB","#0010AA","#001099","#001088","#001077","#001066","#001055","#
001044","#001033","#001022","#001011","black")

rd <- vegdist(x1, 'bray')

rc <- hclust(rd, method="'ward.D")
cd <- vegdist(t(x1), 'bray')

cc <- hclust(cd, method="'ward.D')
op <- par(oma=c(0,0,3,0))

heatmap(x1, Rowv=as.dendrogram(rc), Colv=as.dendrogram(cc), cexRow=0.5, cexCol=0.7,
col=myblue, margins=c(4,4))
mtext('method: "WARD.D"', side=3, adj=0.5, cex=0.8, line=6)
mtext('distance: "BRAY-CURTIS", side=3, adj=0.5, cex=0.8, line=5)
par(op)
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