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{Copyright note: this lecture is partly based on lecture materials of T. Olszewski, Texas A & M, and Michal Kowalewski, U. Florida)

An explorative technique for identifying groups and subgroups in a 
multivariate dataset, based on a given distance or similarity measure. –
Hammer and Harper Paleontological Data Analysis

Cluster Analysis



Purpose: Classify observations or variables into interpretable categories (i.e., clusters)

{Copyright note: this lecture is partly based on lecture materials of T. Olszewski, Texas A & M}

Cluster Analysis



Dendrogram: A branching diagram that hierarchically nests 
objects into increasingly more inclusive groups; degree of 
similarity is depicted by length of branch; ordering axis prevents 
branches from crossing but is otherwise arbitrary



Bray-Curtis similarity matrix

Starting dataset: similarity (or distance) 
matrix
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matrix



How to convert distance matrix to 
clusters?

Types of clustering
• Divisive versus Agglomerative
• Hierarchical (connectivity based) versus Non-

Hierarchical (centroid-, density-, other-based)

The classic approach is agglomerative and 
hierarchical



Hierarchical clustering:

• Divisive (or partitioning) Clustering: Top-down

• Agglomerative Clustering: Bottom-up
• Most commonly used
• Iterative 
• Not a statistical test! (though one could be applied... 

e.g. Similarity Profile Analysis (SIMPROF) )



Agglomerative Clustering

Steps:

1) SEARCH. Start with a similarity matrix (ALL agglomerative clustering methods 
start at this point); find the cell with the highest similarity value (or lowest 
dissimilarity value) and link that pair of objects (i.e., form a cluster); note that if 
there is more than one pair with equal similarity, link the first pair found 
(IMPORTANT: this means that the order of objects in the matrix can influence 
the outcome, particularly for large data sets with lots of duplicate values!).

2) REDUCE. Recalculate similarities, treating the clusters as new objects; how 
clusters are treated differs among different algorithms.

3) REPEAT until all objects are related to one another.
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Agglomerative Linking Algorithms (How do we determine groups?)

• With singleton clusters, linkage straightforward
• Greatest similarity or Least distance

• For multi-observation clusters: Linkage algorithm 
used will often significantly effect the resulting 
clusters

• No consensus on the “best” algorithm
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Agglomerative Linking Algorithms (How do we determine groups?)

Types of Algorithms
• Nearest Neighbor
• Farthest Neighbor
• Average Linkage
• Unweighted or 

weighted
• Centroid Linkage
• Unweighted or 

weighted
• Ward’s



Agglomerative Linking Algorithms

Nearest Neighbor or Single Linkage Clustering. Similarity between two clusters equals the 
maximum similarity (minimum dissimilarity) between any two members of the clusters:

S(AB),C = max(SAC, SBC) S(AB),(CD) = max(SAC, SAD, SBC, SBD)
Note: This algorithm tends to produce “chaining” (i.e., apparent addition of each object in a dendrogram, one by one); 
normally, this would suggest a gradient structure in the data, but single linkage clustering can produce it artifactually.

Farthest Neighbor or Complete Linkage Clustering. Similarity between two clusters equals 
the minimum similarity (maximum dissimilarity) between any two members of the clusters:

S(AB),C = min(SAB, SAC) S(AB),(CD) = min(SAC, SAD, SBC, SCD)
Note: Use this rule to recalculate similarity values in the matrix (in the REDUCING step), but continue to SEARCH for the 
greatest similarity values.  This algorithm tends to produce very clear groups – i.e., by using minimum values, it tends 
to underestimate similarity between recognized clusters.
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Single linkage clustering:

(D,F) and E distance = 1.00
because:
(D, E) = 1.00
(F, E) = 1.12

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity
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Agglomerative Linking Algorithms

Farthest Neighbor or Complete Linkage Clustering. Similarity between two clusters equals 
the minimum similarity (maximum dissimilarity) between any two members of the clusters:

S(AB),C = min(SAC, SBC) S(AB),(CD) = min(SAC, SAD, SBC, SBD)
Note: Use this rule to recalculate similarity values in the matrix (in the REDUCING step), but continue to SEARCH for the 
greatest similarity values.  This algorithm tends to produce very clear groups – i.e., by using minimum values, it tends 
to underestimate similarity between recognized clusters.

Complete linkage 
clustering:

(D,F) and E distance = 1.12
because:
(D, E) = 1.00
(F, E) = 1.12

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Unweighted Pair Group Method with Arithmetic Averaging (UPGMA). Similarity between 
two clusters equals the mean similarity between all possible pair-group combinations:
S(AB),C = (SAC + SBC)/2 S(AB),(CD) = (SAC + SAD + SBC + SBD)/4
SE,(C,(AB)) = (SAE + SBE + SCE)/3
Note: Degree of clustering is intermediate between single and complete linkage.  Clusters with more samples exert 
greater influence on the similarity of the new cluster with all other objects.



Agglomerative Linking Algorithms

Unweighted Pair Group Method with Arithmetic Averaging (UPGMA). Similarity between 
two clusters equals the mean similarity between all possible pair-group combinations:
S(AB),C = (SAC + SBC)/2 S(AB),(CD) = (SAC + SAD + SBC + SBD)/4
SE,(C,(AB)) = (SAE + SBE + SCE)/3
Note: Degree of clustering is intermediate between single and complete linkage.  Clusters with more samples exert 
greater influence on the similarity of the new cluster with all other objects.

UPGMA clustering:

((D,F), E) and C = 2.05
because:
(D, C) = 2.24
(F, C) = 2.50
(E, C) = 1.41

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Weighted Pair Group Method with Arithmetic Averaging (WPGMA). Similarity between two 

clusters equals the mean similarity of previously existing clusters when they are grouped 
(average always involves only 2 terms and does not weight clusters by their size; i.e., when linking a cluster containing 

20 samples and another containing 2 samples, the 2-sample cluster is treated as equal to the 20-sample cluster):

S(AB),C = (SAC + SBC)/2

S(AB),(CD) = [½(SAC + SAD) + ½(SBC + SBD)]/2 = [SA,(CD) + SB,(CD)]/2

SE,(C,(AB)) = [½(SAE + SBE) + SCE)]/2 = (SE,(AB) + SCE)/2

Note: The first two cases are identical to UPGMA, but the third effectively downweights the members of the larger 

cluster (AB) so that each cluster carries the same influence on the mean similarity regardless of the number of samples 

it includes.
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clusters equals the mean similarity of previously existing clusters when they are grouped 
(average always involves only 2 terms and does not weight clusters by their size; i.e., when linking a cluster containing 

20 samples and another containing 2 samples, the 2-sample cluster is treated as equal to the 20-sample cluster):

S(AB),C = (SAC + SBC)/2

S(AB),(CD) = [½(SAC + SAD) + ½(SBC + SBD)]/2 = [SA,(CD) + SB,(CD)]/2

SE,(C,(AB)) = [½(SAE + SBE) + SCE)]/2 = (SE,(AB) + SCE)/2

Note: The first two cases are identical to UPGMA, but the third effectively downweights the members of the larger 

cluster (AB) so that each cluster carries the same influence on the mean similarity regardless of the number of samples 

it includes.

WPGMA clustering:

((D,F), E) and C = 1.89
because:

((D, F), C) = 2.37 (avg of 2.50 and 

2.24)

(E, C) = 1.41

*Note: This is a distance (not similarity) matrix. We want to minimize distance, maximize similarity



Agglomerative Linking Algorithms

Unweighted Pair Group Method with Centroid Averaging (UPGMC). Similarity between two 
clusters equals their similarities as composite objects (i.e., the sums of all their component 
samples):

 

x(AB ),Ci =
xAi

+
+ xBi + xCi
3



Agglomerative Linking Algorithms

Weighted Pair Group Method with Centroid Averaging (WPGMC). Similarity between 
two clusters equals their similarities as composite objects, but determining their 
composite composition using only the last two objects (samples or clusters) to be 
joined in each cluster:

 

x(AB ),Ci =

(xAi + xBi)
2

+ xCi
2

=
(xAi + xBi)

4
+
xCi
2



Agglomerative Linking Algorithms

Ward’s Method or Minimum Variance Clustering or Orloci’s Sum of Squares. Similarity is 
calculated as in UPGMA or UPGMC but clusters are created by grouping objects to minimize 
the variance (or inertia/entropy/information) of the similarities between all member objects 
within a cluster:



Agglomerative Linking Algorithms

Ward’s Method or Minimum Variance Clustering or Orloci’s Sum of Squares. Similarity is 
calculated as in UPGMA or UPGMC but clusters are created by grouping objects to minimize 
the variance (or inertia/entropy/information) of the similarities between all member objects 
within a cluster:

3 clusters: ABC, DE, F; which two should be clustered next? Pick the two that produce the 
minimum variance ( = mean of all S’s in that cluster):

 

V(ABC )(DE ) =
(SAD - S )2 + (SAE - S )2 + (SBD - S )2 + (SBE - S )2 + (SCD - S )2 + (SCE - S )2

6

 

V(ABC )F =
(SAF - S )2 + (SBF - S )2 + (SCF - S )2

3

 

V(DE )F =
(SDF - S )2 + (SEF - S )2

2



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

• Imposes hierarchical structure on data, whether real or not
• Even a completely uniform similarity matrix will produce clusters

• It does not depict data with multiple, independent underlying controls well
• Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc. 

• Because based on algorithms rather than analytical solutions, solutions can be non-unique



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

• Imposes hierarchical structure on data, whether real or not
• Even a completely uniform similarity matrix will produce clusters

• It does not depict data with multiple, independent underlying controls well
• Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc. 

• Because based on algorithms rather than analytical solutions, solutions can be non-unique



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

• Imposes hierarchical structure on data, whether real or not
• Even a completely uniform similarity matrix will produce clusters

• It does not depict data with multiple, independent underlying controls well
• Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc. 

• Because based on algorithms rather than analytical solutions, solutions can be non-unique



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

• Imposes hierarchical structure on data, whether real or not
• Even a completely uniform similarity matrix will produce clusters

• It does not depict data with multiple, independent underlying controls well
• Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc. 

• Because based on algorithms rather than analytical solutions, solutions can be non-unique



Agglomerative Clustering Algorithms

Limitations of Agglomerative Cluster Analysis:

• Imposes hierarchical structure on data, whether real or not
• Even a completely uniform similarity matrix will produce clusters

• It does not depict data with multiple, independent underlying controls well
• Not good for visualizing e.g. lithology, bathymetry, oxygen levels, etc. 

• Because based on algorithms rather than analytical solutions, solutions can be non-unique

• Linkage algorithm used significantly effects topology of clusters 



Two-way Cluster Analysis
Use ordering axis of sample and taxon analyses of the same data to reorganize the rows 
and columns of the original data matrix – a very effective way of understanding which taxa 
are related to which cluster of samples.  Remember that the purpose of the ordering axis in 
cluster analysis is to keep branches from crossing, not to show a statistically justified 
gradient, so links can be “reflected” and “spun”.  In this sense, two-way cluster analysis is 
arbitrary, but it is nevertheless a very effective way of relating taxa and samples and 
incorporating data into a figure.













Cophenetic or Matrix Correlation
• Cluster analysis inherently discards some information from the original similarity 

matrix. So, how well does a dendrogram represents the original matrix?

• Each pair of objects has a similarity value in the original similarity matrix and a 
depicted similarity in the dendrogram (the linkage level of the pair). For each 
pair, these values can be cross-plotted (recall the Shepard diagram in NMDS), 
with dendrogram similarity on one axis and measured similarity on the other.

• The degree of correlation between the two (quantified using r) is a measure of 
how well the clustered pattern retained the underlying information. Note that 
cluster analysis generally is good at linking very similar objects but loses its ability 
to accurately depict patterns at lower levels of similarity
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Cophenetic Correlation

*Using single linkage (nearest neighbor) clustering

Original distance matrix

Cophenetic (dendrogram) distance matrix
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Cophenetic Correlation

*Using single linkage clustering

Cophenetic Coefficient 

Cophenetic (dendrogram) distance matrix

Original distance matrix



Non-hierarchical clustering:

One common type: partitioning algorithms 
• example: k-means clustering

• User defined # of clusters
• Iterative
• Non-hierarchical 



Partition Clustering

Partitioning clustering starts with all objects and divides them into groups

Aim: Given n objects (observations) in a p-dimensional space (variables), determine a 
partition of the objects into K groups, or clusters, such that the objects within each 
cluster are more similar to one another than to objects in the other clusters.  Each cluster 
should have the smallest inertia or entropy or variance possible.

Note: K is determined a priori by the user, although multiple K values can be tried to find 
an optimal fit

K-means Algorithm
1. Divide the objects into K sets, either randomly or using some external information
2. Calculate the centroid of each data set
3. Reassign all objects to the nearest centroid
4. Recalculate new centroids based on new groupings
5. Repeat until clusters stabilize (membership no longer changes and centroids don’t move)

The traditional form of this algorithm minimizes the total error sum of squares (TESS):

K =  number of clusters
Si = set of objects in cluster i (i = 1…K)
xj = value of variable j for object x
mij = mean of variable j in cluster i
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K-means algorithm

k = 3 Goal: minimizes the total error sum of squares 



Divisive versus Agglomerative and Hierarchical versus Non-Hierarchical Methods – The 
classical approach is agglomerative and hierarchical; modern clustering techniques for 
very large data sets (e.g., genetic networks) are based on information theory and are 
typically neither hierarchical (i.e., cannot be depicted as dendrograms) nor 
agglomerative; rather, they are based on network linkage patterns

Example of a biogeographic 
network

Rojas et al. 2017, Geology



Constrained clustering
Typically, constrained clustering incorporates either a 
set of must-link constraints, cannot-link constraints, 
or both.

In the usual unconstrained analysis, the entire 
dissimilarity matrix is searched at each stage for the 
next link/cluster. In the constrained analysis, only 
stratigraphically adjacent values/clusters are 
considered. 



Example, constrained clustering

Grimm et al. 2011

Kettle Lake, ND





R Commands

cophenetic{stats} - computes the cophenetic distances for a hierarchical clustering.

hclust{stats} - hierarchical cluster analysis on a set of dissimilarities and methods for 
analyzing it.

rect.hcluster{stats} - draws rectangles around the branches of a dendrogram highlighting 
the corresponding clusters.

identify.hlcust{stats} - reads the position of the graphics pointer when the (first) mouse 
button is pressed. It then cuts the tree at the vertical position of the pointer and highlights 
the cluster containing the horizontal position of the pointer.

heatmap{stats} - produces a false color image (basically image(t(x))) with a dendrogram
added to the left side and to the top. Reordering of the rows and columns according to 
some set of values (row or column means) within the restrictions imposed by the 
dendrogram is carried out.  This command can be readily modified to accommodate any 
dissimilarity metric and any clustering algorithm to produce a 2-way cluster analysis.

kmeans{stats} - perform k-means clustering on a data matrix.

Also, see the {cluster} and {rioja} packages.



References for Cluster Analysis and Entropy in Ecology

Girvan, M. and Newman, M.E.J., 2002, Community structure in social and biological networks. 
Proceedings of the National Academy of Sciences, v. 99, p. 7821-7826.
Hopcroft, J., Khan, O., Kulis, B., and Selman, B., 2004, Tracking evolving communities in large linked 
networks. Proceedings of the National Academy of Sciences, v. 101, p. 5249-5253.

Kaufman, L. and Rousseeuw, P.J., 1990, Finding Groups in Data: An Introduction to Cluster Analysis. 
Wiley, New York.
Mantel, N., 1967, The detection of disease clustering and a generalized regression approach. Cancer 
Research, v. 27, p. 209-220.
Morris, S.A. and Yen, G.G., 2004, Crossmaps: visualization of overlapping relationships in collections of 
journal papers. Proceedings of the National Academy of Sciences, v. 101, p. 5291-5296. (An 
independent re-invention of 2-way cluster analysis.)
Palla, G., Derenyi, I., Farkas, I., and Vicsek, T., 2005, Uncovering the overlapping community structure of 
complex networks in nature and society. Nature, v. 435, p. 814-818.
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D., 2004, Defining and identifying 
communities in networks. Proceedings of the National Academy of Sciences, v. 101, p. 2658-2663.
Slonim, N., Atwal, G.S., Tkačik, G., and Bialek, W., 2005, Information-based clustering.  Proceedings of 
the National Academy of Sciences, v. 102, p. 18297-18302.
Sneath, P.H.A. and Sokal, R.R., 1973, Numerical Taxonomy: The Principles and Practice of Numerical 
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Script used to generate the figure on the previous slide
library(stats)
library(vegan)

x <- read.csv("dummyorddata.csv") # an example of a simple multivariate dataset
x1 <- as.matrix(x[,-1]) # store as a matrix of numerical variables of interest
x1 <- wisconsin(x1) # standardized/transform data as appropriate
rownames(x1) <- x[,1] # store sample labels as rownames

myblue <- c("#00FFCC","#00EFCC","#00EECC","#00DECC","#00DDCC","#00CDCC","#00CCCC","#00BCCC","#00BBCC","#00AACC", 
"#0099CC","#0088CC","#0087CC","#0077CC","#0076CC","#0066CC","#0065CC","#0055CC","#0054CC","#0044CC","#0043CC","#0033CC","
#0032CC","#0022CC","#0021CC","#0011CC","#0011BB","#0011AB","#0010AA","#001099","#001088","#001077","#001066","#001055","#
001044","#001033","#001022","#001011","black")

rd <- vegdist(x1, 'bray')
rc <- hclust(rd, method='ward.D')
cd <- vegdist(t(x1), 'bray')
cc <- hclust(cd, method='ward.D')
op <- par(oma=c(0,0,3,0))

heatmap(x1, Rowv=as.dendrogram(rc), Colv=as.dendrogram(cc), cexRow=0.5, cexCol=0.7,
col=myblue, margins=c(4,4))

mtext('method: "WARD.D"', side=3, adj=0.5, cex=0.8, line=6)
mtext('distance: "BRAY-CURTIS"', side=3, adj=0.5, cex=0.8, line=5)

par(op)
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